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{' 1. TINTRODUCTION

. \Many of the problems in decision and control theory involve estima-

- tion and optimization. Several methods including self-tuning regulators
F’ and model reference adaptive schemes are available for estimating and
controlling systems with unknown parameters {1]},[2],[3]. The theory for

the optimization of a single performance index for both deterministic and

stochastic systems with known parameters is well-established [4],[3],[%].
- The theory for the identification and control of systems with several
i: decision makers, each having different information available and each having
; his own performance index, is—mueh—mo§g>difficult_l?]i There are several
;i conceptual reasons why the classical theories for systems with single cost
Ii functions cannot be easily adjusted to handle multiple cost functions. First,
it may not be possible to optimize the multiple objectives simultaneously.
tf Second, the information available to each user is not necessarily the same.
b

These problems do not occur for the single objective case.

w e
PR

1.1. Overview of Multi-User Control Theory

The problem of optimizing multiple objective functions has led tc
. the development of several solution concepts, {8]. A Pareto-optimal solution
is used when there is cooperation among the decision makers. For systems

in which cooperation cannot be guaranteed, a Nash sclution is employed, [9].
" Some svstems have a structure in which one user is able to enforce his
strategy upon another user. A solution concept for this type of svstem is

o xnown as a leader-follower or Stackelberg solution.
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The Nash decision strategy arises frequently in systems with
multiple decision makers. An inherent property of the Nash strategy is
that it pravents decision makers from cheating. Any unilateral deviation
by a decision maker from the Nash equilibrium incurs a greater cost for
that decision maker. It is clear that the Nash strategy is a ratiomal
strategy for systems whose users do not cooperate.

The Nash solution concept arises often in economic contexts.
Consider firms competing against each other in a market. Each firm seeks
a production level for optimizing its cost function: profit. The firms do
not cooperate in determining production levels. A Nash strategy may also be
required for many estimation and control problems. In an estimation and
control scheme there may be one performance index, e.g., minimum mean square,
for estimating the parameters and a different index, e.g., quadratic, for
controlling the system. The goals of these performance indices may oppose
each other, and therefore, a Nash solution is required. A Nash game can
even arise in a leader-follower setting. Consider a hierarchical structure
in which there are several followers at the same level in the structure.
The leader imposes his strategy but the followers are permitted to compete
with each other. 1In this case, the followers are involved in both leader-

follower and Nash games.

1.2, Determining Nash Strategies Under Uncertainties

When the system and cost functions are known to the decision makers,

a Nash solution can be found. An explicit closed-form expression for a

.- e v e S T B Sy e e RN
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l Nash equilibrium exists for linear systems with quadratic performance indices
[10]. A decision maker having information about the plant and the others’

- objectives can determine both his and the other players' Nash strategies.

- However, when either the plant is not known or the cost functions are not

known to each decision maker, a player cannot determine a priori the Nash

equilibrium. This work investigates how a decision maker can use reaction

relations of the other decision makers for determining Nash equilibrium.

1.3. Organization of Thesis .

In Section 2 a linear quadratic game is posed and an equilibrium .
is proposed. In Section 3 it is shown that the proposed equilibrium is
equivalent to a Nash equilibrium. It is proven in Section 4 that algorithms
which are updated based upon the error in the estimated state cannot converge X
to a value different than the Nash equilibrium. 1In Section 5 an algorithm
using reaction relations of the other decision makers is described. Finally,

an example using the algorithm is given in Section 6. 7.
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2. A PROPOSED EQUILIBRIUM FOR A LINEAR QUADRATIC GAME

In this section a linear quadratic game is introduced and its
certainty-equivalent optimal inputs are determined. An equilibrium for the

game is proposed and the defined equilibrium is explicitly calculated.

2.1. Formulation of the Linear Quadratic Game

Consider a linear time-invariant, discrete system described by

Xk+1 = AXk + BlU1k + BZUzk + Wk (2.1)

where Xk is the n-dimensional state vector at time k, and UI and U2 are
k k

m and m2 dimensional input vectors to be chosen bv Decision-Maker 1 (DM1)

and Decision-Maker 2 (DM2) at time k, respectivelv. Assume that (A,B.) and

1
(A,Bz) are controllable. Also assume that wk i» an n-dimensional Gaussian
random vector with E{Wk}==0 and E{Wkwl'{1 =P, the (n-n) covariance matrix.

The single-stage cost function associated with DMi (i=1,2) at time k is

Jik = E{(Xk+l—qi) Qi(Xk+l—Ci) + UikRiUik? (2.2)

where Ri is an (mixmi) positive definite matrix, Qi is an (nxn) positive semi-
definite matrix, and Ci is an n-dimensional vector. The state Xk is available
to each DM at time k. The plant (2.1) is known to each DM. Each DM knows
his cost function parameters, Q, R, and C, but he does not know the other
DM's. It is assumed that each DM plavs ratiomally, that is, he chooses his

input U to minimize his cost (2.2).




As stated earlier, each DM is attempting to tune his control law to
the reaction relations of the other DM. Since cooperation between the
DM's cannot be enforced, it is desirable that each DM .tune his control to
reach a Nash equilibrium. The Nash solution to the N-stage linear quadratic
geme is given in [10]; however, this solution requires the DM's to know each
other's cost function. It is possible that estimates of the cost parameters
could be used in a dynamic programming solution to the N-stage problem, but
the implementation of the estimation schemes may involve calculating condi-
tional probability distributions, which can be difficult. On the contrary,
the calculations involved in minimizing the single stage cost function are
quite simple. If the DM's play the single stage game over and over while
updating their control laws appropriately at each stage, and their control
laws converge to the Nash solution, then the goals of the DM's have been met

with relatively simple calculations.

2.2. The Certainty Equilvalent Control

Due to the quadratic nature of the cost functions, linear controls

are assumed:

[an
]

F X +G (2.3)
1, 1kYk L

[l
[

s 7
2 =Py X + Gy (2.4)
k X

where Fi (i=1,2) is an OniYn) matrix and Gi is an mi-dimensional vector.
k k
Each DM estimates the other's input and then formulates his own input so

as to minimize his cost based on his estimate. The principle of certaintvy
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equivalence is invoked here: The DM's replace the noise by its mean and -
estimate each other's inputs and play optimally for those estimates. The

game proceeds to the next stage with the DM's repeating the procedure

above. When the DM's estimate each other's input correctly, we say they
have reached an equilibrium. It will be shown that this equilibrium is a
unique Nash equilibrium,

With assumption (2.4), DM1 views the system (2.1) as

t
t % = (A+B,F, )X, +B,G, +B.U (2.5)
i 1k+1 2 2k k 2 Zk 1 1k '.
A where il is DMl's estimate of the next state based on his estimate of .
- k+1
; DM2's input
L
U, =F,% +0G, . (2.6) -
2.~ T2 M 2, ‘

The symbol '"' indicates an estimated value. DMl sees his cost as

. R . , . .
Jl = [(A+132F2 )xk+8202 +B U —Cl] Ql[(A+B2F2k)Xk+B2G2

k k k 1 1k k
+B. U, -C,]+U] R U, . (2.7) N
1 1k 1 Ik 1 1k »
Minimization of (2.7) with respect to U1 yields -
k
. = _(n' -1 o A 9 .
ulk = -(B,Q B, +R)) qul[(A+B2F2k)Xk+B2G2k c,l. (2.8) -

The positive definiteness assumptions on Ql and R1 guarantee the existence

of the term involving the inverse in (2.8).

It is seen that DM1's input is a function of his estimate of DMI's

input. DMl's input can be decomposed as follows .
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F1 (F2 ) = —(BlQ1B1-+R1) B1Q1(A+B2F2 ) (2.9)
k "k k
A = _r/n' -1 A
G1 (G2 ) = (BlQlBl-+Rl) BIQI(BZGZ Cl). (2.10)
k "k k
Note that DM2's cost parameters QZ’ R2, and C2, which are unknown

to DMl, do not enter into (2.9) or (2.10). 1In forming his input, DMl knows

1 Once he has obtained his estimates of ?2 and

. k

G2 ,» his optimal input is easily obtained. Also note that when the input
k

A, Bl’ B,, N Rl’ and C

2’ ~.1’

is decomposed, F (% ) does not depend on G (é ) and vice versa. Similar
1 1 1 2
k 'k k "k
results for U2 are also obtained:
k
~ - _ ' -1 _ 2
F2 (F1 ) = (BZQZBZ-FRZ) BZQZ(A+B1F1 ) (2.11)
k 'k k
. ' -1_ o
= - R 3 - . .
sz(le) (BzQszi-Az) BzQz(Bl(‘lk C2) (2.12)

2.3. A Proposed Equilibrium

- - - RS ‘.. - ° - . . - N
Y R S T e T Y
e lalat b TP )

Let the equilibrium be defined as when each DM's estimate of the

other's input is correct. At equilibrium we then have

F.(F. ) =F, =7 G. (6. ) =06 =0

1. (Fy 1T 1, 1 1

K %k K e K %k K e (213
F, (F ) =F, =F, G, (6 ) =G, =G

4 k k e k k I e

where Fi and Gi (i=1,2) denote the equilibrium sclutions. Substituting
e e
(2.9)~-(2.12) into (2.13) and denoting for ease of notaticn

ot e e e e e e e e e e E R T S S S .
B e o N R AP PP ST ST PR SR
K s - IR et e . " e . - - . .‘.'.‘k‘o‘.'.‘-‘.'.'.'-'-'.'c'-“s\.‘s';'-\ ’-"b\'\‘\.'-‘
o~ P SRR PRCAC SRS RL R WAL PRSI S Wl WADAE P VLIPS, PP, PP PRI, 10, P L, 1

L A Sl de e B T T T T WOtV




N Mae St ot e an-de A ueel )

t
@, BlQlBl + R1
(2.14)
)
a, BZQZBZ + Rz,
. we obtain the equilibrium solutions:
L
b _ _ L -1+ -1 -1+ -1_+ _
N Fle = (I @y BlQleaz BZQZBI) @) BlQl(Bza2 BZQZ A (2.15)
E ~1_ -1_» -1 -1_1 -1+
= - - I¢
L er (1 @, B2Q231a1 BIQIBZ) a, BZQZ(Bla1 BIQI 19Y. (2.16)
S
N _ ~1_+ 1+ -1 -1 -1,
Gle = (I-—al BlQleaz BZQZBl) oy BlQl(Cl--Bza2 BZQZCZ) (2.17)
_ ~1_+ =1_1 -1 =1_ -1,
G2e = (I--a2 BzQzBla1 BIQIBZ) ay BZO_Z(CZ--Bla1 BIQICI)' (2.18)

-1 - . . .
As stated above, oy and azl always exist. From the matrix inversion lemma

[I1], it is seen that the existence of

-1_1 =1_. -1
(I--a1 BlQlea2 B2QZBI) (2.19)
implies the existence of
- -1 -1, -1
g (I-~a2 B2Q2B1a1 BIQIBZ) . (2,20)

Hence, the existence of the equilibrium defined by (2.13) hinges on the

existence of (2.19). Note that the equilibrium cannot be calculated by

either DM a priori since it involves the other DM's cost parameters. If the
inverse (2.192) exists, we define the equilibrium plant as the system (2.1) :ii
with the equilibrium inputs applied.

The equilibrium plant is

(. 8

= 7 ' - - ) - -F
xk+1 _I+L~1(€2 I)+uz(£1 I)}A&k+u1[C1 £2C2]+u2[C2 t,ICI] (2.21)




. 9
' where
' -1 -1
wg = Byyg oy BQ (2.22)
£ =B,a 'B'g (2.23)
1 Pi% Piy :
-
= 1-a718'q.8.02'B'q.B (2.24) .
"1 ¢ P11P2% P2t . -
- = I-a %8!0.8.07'8'Q,B (2.25)
Yy @y ByQyB1%; B1Qy By .
The steady state of this equilibrium plant is denoted xss and
given by
-1
= -7 - - 1 - -
X oo = [T-{T+ 1 (6,=T) + 1y (6,1 JAT ™ [u (C;=5,C)+u, (C,=£,C ) 1. (2.26)

The steady state exists if the eigenvalues of

{I+u1(£2-I)+u2(£1—I) 1A (2.27)

are within the unit circle.

For the scalar system

Xy 41 = axk + blu1 + b2u2 + Wi (2.28)
k k
and cost function
2 2
Jik = q;(xymep) +orpug,

we obtain from (2.15)-(2.18)

£, = -aqlblrl/l

£, = -aqzbzrz/i
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2

gle = -qlbl(qzbz(cz-cl)-clrz)/A
= —q.b.(q.b2(c,~c)=c.r.) /b

g2e P2191°1€17¢y) ¢

2
1q2 2q1b1+r1r:2. Since A is never zero, the equilibrium

always exists. The equilibrium plant is

where A=r b§+r

AN
MO S

- 2 2
Xeat = (T TX Fa bre T, +a, b c,r ) /A,

The equilibrium plant is stable if |ar1r2/Al <1l. Equivalently, it is stable

if
a5y 9y
la] <« ——+-=+1. (2.29)
1 2

If the equilibrium scalar plant is stable, the steady state is

2 2
_ 9Ty agbyricy
Xx = . (2.30)
ss b2 +r b2 +r.r.-ar,r
T1P29p T 129y T I Ty=ant,

The equilibrium steady state controls, ui=fi xss+gi , are
e e

2
i blq1 (b2q2(c1-c2) +r,e, (1-a))

uy 5 5 (2.31)
ss b1q1r2+b2q2r1+ (l-a)rlr2
b,q (b2q (c,-c,)+r c,(1-2a)
272717172 71 172
U2 = 2 2 (2.32)
ss b1q1r2+b2q2rl+ (1-3)1:11:2

Although the existence of the equilibrium plant is guaranteed for
the scalar case, the stability of the equilibrium system is not known
a priori to either DM unless !a|<1l. If [a|<1 then (2.29) is trivially

satisfied. We note that for r, orr, sufficiently small, or q; °or g,

L9




el

11

sufficiently large, any initially unstable plant, that is, |a|> 1, will have
a stable equilibrium system. A problem posed by this fact is how the DM's
would realize the equilibrium does not yield a stable equilibrium system
and how the DM's should readjust their r's and q's in order to create a

stable equilibrium,

Ty T——,
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3. THE NASH EQUILIBRIUM SOLUTION

In this section it is shown that if the proposed equilibrium in

(2.15)-(2.18) exists, then the equilibrium is a Nash equilibrium.

*
2

equilibrium solution if, for each m€M, where M is the set of decision

The input strategy U*= {U’;,U ,...,UI’;} is defined to be a Nash

% m* m* A ok ok * * *
makers, Jm(U )5Jm(U ,Um) where U {Ul’UZ"'"Um-l’um+1""’Um}' In

our case with M=2, U*= {U*,U;} is a Nash equilibrium if
* % *

and

* *
JZ(U*’UZ) < J,(UT,U,) (3.2)

for any U1 and U2. We prove that the equilibrium given by (2.15)-(2.18)

is Nash by verifying (3.1) and (3.2).

Suppnse that U, and U, 1is a Nash equilibrium. Then we must have

1 2
e e
T
Jl(Ul ,L2 ) < Jl(Ul +51,U2 ) (3.3)
e ‘e e e
and
Jz(Ul ’U2 ) < Jl(Ul ,U2 +<52) (3.4)
e e e e
for any arbitrary ml—dimensional and m2—dimensional vectors 61 and 62,
respectively. Let
Ui=Ui +r$i=Fixk+G:_L +cSi. (3.5)
e e e

Substituting (3.5) and (2.15)~(2.18) into (2.2) we obtain
- - ot '
Ji(Ul,Uz) = I\i + ci(BiQiBi+Ri)'Si. (3.6)

See the Appendix for the expressions for K Then

.

Riiart it Sl

[N s o got
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=K

300 50, ) = Ji(Ul'Uz)’6 ~ =5
e e 1—62=0

- - - [] t
Jl(Ul’UZe) = Jl(Ul,UZ) !5 o = K, +6,(B;0,B 4R )6,
2

- - - 1 4 [ 4
Jz(Ule,Uz) = JZ(UI,UZ) '5 " = K, +6,(B,Q,B,+R,)6,.

Since B;QiBi-i-Ri is positive definite, the inequalities (3.3) and (3.4)
are met.

The equilibrium in (2.15)-(2.18) is now known to be a Nash
equilibrium. It follows that the equilibrium is unique provided the
inverses in (2.15)-(2.18) exist. 1In solving for the equilibrium we assumed
the inverses exist. If they do not exist, there are infinite solutions for
(2.13). Since we desire an algorithm to converge to the Nash solution, we
can only consider systems which yield a unique equilibrium. As in the
scalar case, we can pose the problem of how the DM's should readjust their
cost parameters to force a unique and stable equilibrium.

We have shown that if a solution exists for (2.13), then the
solution is a unique Nash equilibrium. The solution to the finite
horizon, N-stage, linear-quadratic Nash game when the plant and cost
functions are known is given in [10]. For the case N=1 and Ci=0, we

obtain a unique Nash equilibrium given by

-1_1 ~1
Fie = -Ri BiQiA A, (3.7)

, . . =1 -1
if the inverse of \= I-G-BlR1 BlQl-O-BzR2

the defined equilibrium also exists given the existence of a specific

BéQ7 exists. We have shown that

matrix. We have attempted to verify algebraically that (3.7) is equivalent

to (2.15) and (2.16). Various matrix identities were tried and the symbolic

R
alar
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processor REDUCE [12] was used. Even for the second-order system we were
not able to prove equality for the general case. However, when numerical
{ examples were examined, (2.15) and (2.16) yield the same results as (3.7).
It is believed that with clever manipulation of (2.15) and (2.16) we
could obtain (3.7).

At this point we justify estimating the other DM's F and G rather
than his Q, R, and C. First, we estimate fewer parameters. In estimating
F and G, DMi estimates miX(n+1) parameters; in estimating Q, R, and C, DMi
estimates nz-kmi-Pmi parameters. Second, 1n the expression for the equi-
librium feedback Ue==FeXk-+Ge, Fe and Ge are unique. The corresponding
3-tuple (Q,R,C) which generates the equilibrium feedback is, in general, not

unique.
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. 4. CONVERGENCE OF ALGORITHMS

We have seen that the equilibrium (2.13) leads to a unique Nash
equilibrium solution. In this section we examine the possibility of an
algorithm converging to a value different than the desired equilibrium.

It will be shown that it is not possible for the DM's to follow an equilibrium
- trajectory while incorrectly estimating each other's control input. This
point is important for algorithms which update the estimates F and G based

on the error in the estimate of the next state.

4.1. The Error Equations
Consider the scalar case of (2.1)
- )
Xeqp = 2%+ blulk-!-b2 Zk. (4.1)

In this development we assume the noise to be zero, because the probability
of the DM's estimating the next state correctly when the system is driven
by Gaussian noise 1is zero.

DMl sees (4.1) as

X = ax, + b,u, +b,u (4.2)

X = ax, + b,a, +b.u. . (4.3)

At stage k the DM's apply their inputs u, and estimate the next state £k+1’

k

At stage k+l, the DM's are given the state xk+l' Each DM then formulates

..... -
...........
'

Ol
o -




his error which is the difference

X,
k+1

k+1

e
2k+1

e
Lt

e =
2k+1

It is clear that, by definition, if the DM's play the equilibrium inputs

(2.15)-(2.18), the errors (4.6) and (4.7) are zero.

between the state xk+1 and the estimate

(4.4)

(4.5)

(4.6)

4.7

We intend to show that

a necessary and sufficient condition for the errors in the estimates to be

zero, and remain zero, is the inputs to (4.1) are the equilibrium inputs.

We consider update laws of the form %.
where ¢ and 6 are functions such that ¢(0) =6(0) =0.

proved in the following two sections.

4.,2. The Moving State Case

=§_ + ¢ (e, and g.
1ﬂ) g

This proposition is

Clearly, if one of the errors is not zero, then the corresponding

DM has incorrectly estimated the other’'s input.

both zero and b1 and b2 are not zero.

Suppose the errors are
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Ly uzk_azk ) fzkxk+82k- (Ezkxk+é2k) - P “9 g

e2k+l = ulk—ﬁlk = flkxk+g1k- (flkxk+é1k) =0 4.9 i

which implies ..]i
kaxk + g2k = fzkxk + ézk (4.10)
flkxk + glk = Elkxk + élk. (4.11)

\ - R R
From (4.10) and (4.l1), if fi=fi (i=1 or 2) then 8; = 8y» and if g, =8

i
then fi=%i, provided xk#O. If this is true for both DM's then, by
definition, the DM's are playing the equilibrium inputs. Suppose this is
not true for 1=2. (A similar argument holds for i=1.) Since the estima-
tion errors (4.6) and (4.7) are both zero, the DM's do not update their

estimates of f and é for the next input. This implies the inputs given by

(2.9)-(2.12) remain the same. The errors of stage k+2 are

Tlewn = bz(f2k+lxk+1+gzk+l'(Ezk+l"k+1+é2k+l)) =b2(f2kxk+l+ng ]
- (Ezkxk+1+é21>> (4.12) i

200 b1(f1k+1xk+1+g1k+l'(%1k+1xk+1+é1k+1)) = bl(flkxk+1+glk ;
- (Elkxkﬂ-élk)). (4.13)

We now investigate whether the errcrs (4.12) and (4.13) can again

be both zero if DMl is not estimating DM2's control correctly. Let

v, o= f2 X (4.14)

+g
t k&%

=f,x, +8,, (4.15)
t K © “k




t€ {k,k+1}, and assume f, #f, and g #é . A plot of the linear equations
2k 2k 2k 2k

(4.14) and (4.15) given in Figure 1 illustrates the results. Clearly, if

# then y $y and an error is generated. From the above we
el T Lt " 2eh
know that if there is an error in estimating the next state then the equi-

librium inputs are not being applied. Although DMl was able to estimate

S

the state at k+l correctly while not using the co.rect f2
k

fault is revealed at stage k+2 if #x, . We see it is possible for
Ere+l T

and é2 » this
k
both players to estimate the next state correctly even though one DM may not

be playing the equilibrium input. However, if the state changes at the

next stage,the error surfaces.

4.3, The Constant State Case

We now consider the case when the state remains constant, X

el T ke
The errors (4.12) and (4.13) reduce to (4.8) and (4.9) which are zero.

By simple mathematical induction we see that the state will remain constant
for all future stages, the errors will remain zero, and therefore, there

will be no updating of the controls. DMl will continue to apply the wrong

£, and 8, » but he will have no error in his prediction of the next state.

“k |3
Let us reconcile this difficulty by examining the properties of the constant,

or steady state X - To be more general, let us not require DM2 to estimate

~
£
L

11

and él correctly either.
K k
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&
X, X+l ¢

Figure 1. The linear equations (4.14) and (4.15) showing an
error is generated if X1 #xk.
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We have

!
o
]

£ +g. -(f +g. ) =
2kxk 2, kak 2,

£ +g -(f, x_ +g,) =0
1kxk L Lok Bl

= ax, + b (f +g. )+ b (f, x +g, ) =x
Fr+l kL lkxk L 22, k" By k -

with £f. , g, £, , g given by (2.9)-(2.12), respectively, yielding
1 1 2 2
k k k k
=q,b (atbyf, ) =q,b, (atd £, ) ~4;0, (by8y '°1f\
a+b k + b k -1 + b k
L b2 +r 2 b2 +r xk 1 b2 + /
19175 2927 % 19175 .
~d,by (B8 ~¢))
+b k = 0. (4.16)
z b2 +r
29275
'qzbz(a+b1€1k) 'qzbz(b1é1k'°2) -
2 — Rt - (fy % tey ) =0 @17 |
b2q2+r2 b2q2+r2 k k
mapPy (8¥hyfy ) "R BB ) )
5 X, + > - (f1 xk-!-g1 ) = 0. (4.18)
b1q1+r1 b1q1+r1 k k
We have three equations in five variables: x , £, £ s é . é . It
k 1 2 1 2
k k k k
appears we have two degrees of freedom and so let us fix X and f1 to any -
k

arbitrary values and solve the remaining system. (Similar results hold if

-~

we fix £, , ¢ ,orgz.)

2 K -
Solving (4.18) for g, we obtain
k
- -1 A 2 A . .
2 = —— £ - A
3 7 [(qlbl(a+b2f2 )+(b1q1+r1).1 )xk+q1b1(b2g2 Cl)]' (4.19) o
k  bja +r, k k k .

Substituting (4.19) into (4.17) and solving for é,) gives
“k

...................................
...............................................
...............




.

T

21
5. = '1 W% +W. ] (4.20)
Zk r r +r b +r b2 lxk 2 .
1 292 T %19
where
wl = abzq (blq1+r )-q q2b1b2(a+b2f2 )-P(b1q1+r )(bzq2 )f2k
W. = b2b c b (b +r,)
2 T 11921725 7920, 19175

-

Note that in (4.20) é2 has no dependence on f Finally, substituting

1
k
(4.19) and (4.20) into (4.16) we obtain
2 2
qlblr ¢ptayb,r e,
X, = . (4.21)
k T b +r b2+ r,-ar.r
192°2 T 590y Ty ry AN T,

-

Note that the variable we were solving for, f, , drops out and does not

2p

appear in (4.21). 1In its place we have a requirement for the arbitrarily

chosen X - If the state is not at (4.21), then the system of equations
(4.16)-(4.18) is inconsistent. For a solution, or a set of solutions to
exist, we must have the constént state at (4.21). We recognize this require-
ment as the steady state (2.30) of the equilibrium scalar plant. The DM's
may estimate each other's control incorrectly with no error, and continue
to have no error in estimating the next state only if the next state remains
at the equilibrium steady state.

Substituting the steady state into the equations (4.16)-(4.18) and

denoting the results as the steady state controls, we obtain

2
—(qlr c (f b c14-1 -ab )-+b bzq q2(c -c )--f1 b2 5t 2)
- k k
g = . (4.22)
L b‘ r +b2 +r,.r,~ar.r
SS 19152 TP T Fp T AT T,

y
1

-
A
4
4
X
A
g
' {
d

1
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2 2 s 2
2Gp +1-aby) +b;b,q,q, (e mc)) - fzkbquzcl)

—(qzrlcz(fzkb

2 2
blqer -l—b2q2r1 + rlr2 - ar:lr2

(4.23)

Note that él is a function of f1 but not of f2 , and éz is a function
- ss - k k ss
of f2 but not of fl . For the original system of equations to be consistent,
k k

this separation of estimation parameters must occur. We solve for each DM's

estimate of the other's control, Gi = Eixssi-éi , from (4.21)-(4.23):
ss ss

2
_ blql(bzqz(cl-cz)-+r2c1(l—a))

2 2
b1q1r2+b2q2r1+r1r2-ar1r2

2
~ bzqz(blql(cz-cl)-+rlc2(1-a))
2 2 .

blqlr24-b2q2r14—r1r2-ar1r2

We observe that even though %1 and fz can be chosen arbitrarily, the
k k

resulting estimates of the steady state inputs are constants and equal to
the equilibrium inputs (2.31) and (2.32). For the state to remain at the
true equilibrium, the DM's must estimate that the other is playing the
equilibrium input. This in turn causes the DM to play his own true
equilibrium. Since the DM's are using the equilibrium inputs, they are not
penalized for incorrectly estimating E and é.

In summary, we see that if a DM estimates the next state incorrectly,
then an error has been made in estimating the input parameters. If the DM's
estimate the next state correctly and continue to estimate the next state
correctly, then the inputs u have been estimated correctly. If the state is
changing and the DM's estimate the inputs correctly, then they have also

estimated the parameters f and g correctly. If the state is not changing




[.-. PR I RS D N A I e e S e A0 2 Pt WA AR AR Al /i B4 R St Bt e = S i i e i il Dl 0% e 2ol ol 0 'a arta o g0

RPN U S e '—"—"1

. 23

. and the DM's estimate the inputs u correctly, then the state is at the 4

steady state (2.30). At the steady state the dynamics of the system are

lost. 1In this case,the DM's do not have to estimate the input parameters
- correctly when minimizing their costs. ‘;1*
. The simple example given below demonstrates the steady state :-:‘
- situation. Consider the system .

~

I I S L N g

- N

2
J = q.,X, + r,u
K 172 1k

qxli+1:'u2
2k 2 22k

[
H

with the control laws

[+
|

. = f X
. 2 kak

. An obvious solution for mirimizing the cost functions is xk=0 and uik=0.

At the steady state, xss=0, each DM estimates the other's input will be

zero and applies his input ui=0. The DM's do not have to estimate the

equilibrium £, 's; for any £ their corresponding input will be the correct
k

k

value, u=0,

4.4, The Vector Case

We now briefly examine the convergence of algorithms for the general
vector problem. Following the development of Sections 4.1 and 4.2, we

obtain

t o oo . e 3
Ul e e e e e i e | -
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E, = -X, =B (U, -U,) (4.26) -
_l Lt RS W D S ¥
,
P A A .
r E = -X =3 (U, -U. ). (4.27) -
[ A T e St e e :

The errors can be zero if the difference U, -ﬁik is zero or if the difference

is in the nullspace of B To eliminate the latter possibility,we now

i‘
1 and 32 to have full column rank. This requirement is not too -

restrictive; it is equivalent to having no redundant control. With this

require B

s requirement the errors are zero if

———
[
o
i

(FZ -sz)xk + (G2 -G, ) =

k k "k ]
and R . :
(F, -F, )X + (G, -G, ) = 0.
L%t L o .
a
We conjecture results for convergence, similar to those obtained for the
~
scalar, case could be obtained. The matrix algebra required to justify our ~

conjecture may be formidable. We realize there may be a possibility of -

~

converging to incorrect values if G, -G, lands in the range space of

F, -F s but we believe this is unlikely.
i ik‘ e

| JUACH
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5. A PROPOSED ALGORITHM

In this section an algorithm is proposed for determining the Nash
equilibrium from the reaction relations of the decision makers. Several
gradient-type algorithms are available for estimating unknown parameters
[13],[14]. Convergence of these schemes has been shown for the single input
case. We maintain the spirit of these algorithms and extend them to systems
with multiple users.

We assume a decision maker can remember his previous L inputs, his
previous L estimates of the other's inputs, and the previous L states. The
number L is a finite memory buffer size whose value depends on the order of
the system. For the noiseless case, DMl can solve (4.26) for DM2's previous

2 Knowing Xk and U2 is not enough to determine F2 and G2 .

k k k k

However, if F2 and G2 are not changing rapidly, DMl can consider them to

be constant over the last L stages. DMl can then use a least-squares scheme

input U

for determinng the best estimate of DMl's input parameters F2 and G2 . We
- k k
denote these estimates as F2 and G2 . Now DMl can use the following updating
k k

scheme:

F = F +%(F P ) (5.1)
K+l

- _ 1 -
G2 = Gz + 7 (G2 -G2 ). (5.2)

k+1 k k "k

If fz ='F2 then a simple interpretation of the updating scheme is: DMl's
k k R

next choice of F2 is the average of his last estimate and DM2's actual last

input. We note the scheme in (5.1) and (5.2) has the desirable property of

not updating when there is no error in estimating the previous input.

S R A e b A el el tunl i o
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The algorithm is initialized with the assumption that the decision
makers have similar costs and objectives. DMl's first estimates fz and 62
o o]

are found by replacing DM2's unknown cost parameters Q2, R2, and C2 with

DMl's parameters Ql’ Rl’ and C DM2 does likewise.

1.
As noted above, convergence for the stochastic gradient algorithms
has been proven for the single user case. We have not shown they converge

for the multiple user case. However, from our results of Section 4, if the

proposed algorithm converges, it must converge to the correct values.
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6. A WORKING EXAMPLE

Consider the system

wr
O
N

Kewl =

6 ( o)
U + oW , X = s
9 8/ % k ° \o

w3 G o o)
6Dl )

Wk is a diagonal matrix whose entries are from a zero mean, unit variance,

2 5
Xk+ U1+

7 3

—
w
~

with cost functions

N O
/R;\
0
/‘_\
[ EY-)
-
+
I}
—

3 0

J2=<ﬁ’

0 3

Gaussian distribution. The noise level is scaled with the factor g.

The matrix <j ) is not stable because it has an eigenvalue in

the left half plane, and so control is required to stabilize the plant.
In this example the DM's know the other's O and R but do not know

the other's target vector C. The DM's can calculate a priori the equilibrium

F's, but must estimate each other's G vector.

Solving (2.15)-(2.18) and (2.21) for the example above, we obtain

0.055 -0.158 ~0.518  0.019
= F =
| 0.061  -0.274 2. | -0.308  -0.278
0.249 2.384
- GZ =
3.543 e | -4.545
9.711]
| -2.880 |
L e e T e AR RS AT RTINS e e e AN
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The following figures show results of simulations with systems
having no noise, 0=0, and systems having ncise, oc=0,1, The figures

display the actual state and its estimates il and ﬁz, and the controls G1

and G2 and their estimates G1 and éz. Since the state and the control Gi

are two-dimensional vectors,we display the components of these vectors one

at a time. We use the following notation to indicate the components:

X X X
! = | *11 - | *21
X = ) X, . %, .
| %2 i 12J 22
F o
g g
11 21
G = G,
812 822
- e e -
g g
A 11 A 21
G ={. Gy =| )
812 | 822 |

The results of simulations with 0=0 are given in Figures 2-7.
In Figures 2 and 3 we see how the estimates iik converge to the actual
state Xk. We also note that the state converges to the true steady state
value. Figures 4-7 show the estimates é, converging to the inputs Gik.
We also see that the inputs Gik converge to the equilibrium values Gy -

e

The results of simulations with o0=0.1 are given in Figures 8-15,
Figures 8-11 show the state and its estimates and Figures 12-~15 show the
control and its estimates. The effect of the noise is evident in the
plots of the actual state. The estimates of the state do not fluctuate as

much as the actual state, because the actual state is driven by the noise.

We again note that the estimates go to their equilibrium values. We

. - . - - e e VTl et At . LR D A T S
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Figure 12. The control 811 and its estimate 81
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!l observe from Figures 12-15 that the noise affects the estimates éik more
. severely than the actual controls Gik. The controls tend to their equili-~

s brium values, but the estimates vary about the true control.

F The estimates are more sensitive to noise than the actual inputs

because the estimates are driven directly by the noise. A DM bases his
estimates on his calculation of the other's previous input. In the noise~-

less case, he can determine the other DM's previous input exactly; however,

e B b

when there is noise the measurement is corrupted, and he can only estimate

the previous control. The functions (2.9)-(2.12) which determine the

actual control act as a filter for the noisy estimates.
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7 7. CONCLUSION

A simple method for determining the Nash equilibrium from the
reaction relations of the decision makers has been presented.

An equilibrium was proposed and shown to be equivalent to the
Nash equilibrium. The class of algorithms, which update based upon the
error in the estimated state, was considered and it was proven that these
algorithms could not converge to an incorrect value. A sample from this
class was described and an example worked.

This work leaves open many areas for future work in the study of
Nash games. For example, algorithms which have better convergence properties
can be studied. Also, problems with different information structures

should be investigated.
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. APPENDIX

PROOF OF NASH EQUILIBRIUM - THE CONSTANT Ki

The constant Ki is given by the following expression:

[ ]
B + 2% A'Q B, (F, X, +G, ) + (F X +G, )'B/Q.B, (F, X +G, )
e e e e e €
*(Fy X ¥6y )'BQyBy (Fy X +G,y )
e e e e
b * 2(Flexk‘*-cle) 'Biquz(erxk+G2e)

' - '
+ (Fi x‘k+Gi ) Ri(Fi Xk-('-Gi ) ZCiQiBl(Fl Xk+Gl )
e e e e e e

- |
2¢ciQ iBZ(erx'k + cze) .
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